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Phase Transitions and Quantum Effects in 
Adsorbed Monolayers 1 

P. N i e l a b a  2 

Phase transitions in absorbed (two-dimensional) fluids and in absorbed layers 
of linear molecules are studied with a combination of path integral Monte Carlo 
(PIMC), Gibbs ensemble Monte Carlo (GEMC), and finite size scaling techni- 
ques. For a classical (nonadditive) hard-disk fluid the "critical" nonadditivities, 
where the entropy-driven phase separations set in, are presented. For a fluid 
with internal quantum states the gas-liquid coexistence region, tricritical, and 
triple points can be determined, and a comparison with density functional 
(DFT) results shows good agreement for the freezing densities. Linear N 2 
molecules adsorbed on graphite (in the x/~ x x/~ structure) show a transition 
from a high-temperature phase to a low-temperature phase with herringbone 
ordering of the orientational degrees of freedom. The order of the transition is 
determined in the anisotropic planar-rotor model as a weak first-order trans- 
ition. The effect of quantum fluctuations on the herringbone transition is quan- 
tified by PIMC and classical simulational methods. The values of the order 
parameter at low temperatures and the transition temperature are both lowered 
by roughly 10% due to quantum effects. Rounding effects of the phase trans- 
ition in adsorbed layers of(N_,).,. (CO)~_x for x < 7 % are analyzed by Monte 
Carlo (MC) methods, and the ground state ordering for the transition in the 
adsorbed pure CO system is discussed, from ab initio potentials. 

KEY WORDS: adsorbed layers; Gibbs ensemble Monte Carlo; path integral 
Monte Carlo; phase transitions. 

1. I N T R O D U C T I O N  

T w o - d i m e n s i o n a l  ( 2 D )  layers  at  surfaces  h a v e  b e c o m e  an  in te res t ing  field 

o f  r e s e a r c h  d u r i n g  the  last  d e c a d e  [ 1 ]. M o s t  o f  the  phase  t r ans i t i ons  in 

these  sys t ems  o c c u r  at  fair ly low t e m p e r a t u r e s ,  a n d  for m a n y  aspec t s  o f  the  

b e h a v i o r  q u a n t u m  effects need  to  be  cons ide red .  Th is  ho lds  in p a r t i c u l a r  if  

one  is c o n c e r n e d  wi th  a d s o r b e d  m o l e c u l e s  at  surfaces,  s ince the  m o l e c u l e s  
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have internal degrees of freedom which need to be treated quantum- 
mechanically even if the translational degrees of freedom can still be treated 
classically. Linear N 2 molecules adsorbed on graphite (in the x//3×x//3 
structure) show a transition from a high-temperature phase to a low-tem- 
perature phase with herringbone ordering of the orientational degrees of 
freedom. In Section 2, the order of the transition is determined in the 
anisotropic planar-rotor model by analysis of the correlation length ~ near 
the transition temperature T o . The simulation data, extrapolated to To, 
yield a large but finite ~ at To, demonstrating that the herringbone 
ordering is a weak first-order transition. The effect of quantum fluctuations 
on the herringbone transition is quantified by PIMC and classical simula- 
tional methods. Quasiclassical and quasiharmonic calculations agree for 
high and low temperatures, respectively, but only PIMC gives good results 
over the entire temperature range. In Section 3, a study of the properties of 
2D model fluids with GEMC techniques is presented. In particular, the 
entropy-driven phase separation in the case of a nonadditive symmetric 
hard-disk fluid is analyzed, and the critical line of nonadditivities as a func- 
tion of the system density separating the mixing/demixing regions can be 
located by a combination of GEMC with finite-size scaling techniques. A 
comparison with a simple approximation is shown. PIMC and GEMC 
techniques are then combined in order to locate the gas-liquid coexistence 
densities for a fluid with classical degrees of freedom and internal quantum 
states, a comparison with NVT-ensemble results and mean field (MF) 
predictions is presented, and a DFT approach is outlined. In Section 4, the 
random field-induced rounding of the Ising-type transition in physisorbed 
(CO)l_x(N2).,. mixtures is studied. Good qualitative agreement with 
recent experiments is obtained with a simple model. 

2. ORIENTATIONAL PHASE TRANSITIONS IN ADSORBED 
MONOLAYERS 

For many years adsorbed layers of N~ on graphite have served as a 
prototype example to study phase transitions in 2D. The phase diagram 
[2] includes below 50K a registered phase having a commensurate 

(x/~ x .v/3) R30 ° structure. The orientations of the molecular axes undergo 
in this phase an orientational phase transition at around 27 K to the "2-in" 
herringbone phase, which retains the translationally ordered x/~ structure 
of the molecular centers of mass. The herringbone phase transition has 
been investigated [-3] by MC simulations using the anisotropic planar- 
rotor (APR) model. The APR Hamiltonian [5] 

N 

H=K(N2)  ~ cos[2cp(Ri)+2q~(Rj)-4O~/] (1) 
< i,.]) 
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is used to model the quadrupolar interactions between the N = L  2 
molecules; all angles are measured relative to one symmetry axis of the tri- 
angular lattice, and O,j is the angle connecting lattice sites Ri and Rj. The 
rotators {cp(Ri)} are pinned with their center of mass on a triangular lat- 
tice {Ri} representing the ( x / ~ x x / ~ )  R30 ° structure, and only nearest- 
neighbor interactions ( i , j )  are taken into account. The coupling constant 
K(N2) = 33 K is obtained [-5] from the electrostatic quadrupole moment of 
N_, and the v/3-1attice constant is a = 4.26 A. The correlation functions are 
defined as F~(I)=((1/N)ZN=j cos[2cp(R~)+2~o(R~+/a~)]) along the 
three symmetry axes, where {a~} denotes lattice vectors ( la~l--a)  along 
these axis and 1 runs over the neighbors along these directions. Although 
it is known that the decay of F , ( / )  for large distances I should be exponen- 
tial, F~(I) oc exp[- - / /~] ,  an estimation of ~ from simulations is difficult. 
For  small / there may be strong systematic corrections to this law, while for 
large / there are not only severe statistical problems but also systematic 
corrections due to the periodic boundary conditions, i.e., F~(l)= F~(L-  I). 
Thus ~ often depends on the range of / used in a fit to the exponential 
decay law. These problems are avoided by the procedure [6]  defining ~ 
via ~,,, In F~( / ) := In [ ( F~( / ) - F~( ~ ))/( F~(l + m) - F~( ov )) ] = m/~/, where 
F~(~  ) := F~(L/2 >> I ,> 4) denotes the constant asymptotic value of F~(I) 
which vanishes in the disordered phase. The advantage of this approach is 
that no (possibly uncontrolled) fitting is involved and, especially, that the 
range where ~t approximates the true ~ can be assessed by inspection. If a 
plot of g,,, In F~(/) versus /yields a plateau for a certain window of distances 
l, then ~ may safely be extracted from such a plateau value. The linear 
dimensions in our simulations [3]  were L = 6 0 ,  90, 120, and 180; the 
statistical effort went up to 1,500,000 MC sweeps over the lattice. ~ - t  is 
plotted in Fig. 1 as a function of temperature. The behavior of ~-~ 
demonstrates that the correlation length increases upon approaching T O 
but without showing even an onset of a divergence upon coming close to 
To; it should be noted that ~ is measured as close as 2% (0.3%) from T O 
for T >  To ( T <  To) (see Fig. 1) and that roughly one decade in reduced 
temperature is covered from both above and below. The temperature 
dependence of the data suggests extrapolating ~ - t  linearly, which yields a 
finite 4+ ~23  (~_ ~ 12) upon approaching To from above (below). Thus, 
judging from the behavior of ~, one can conclude that the herringbone 
transition of the APR model is a weak first-order transition. 

Now the problem is addressed to quantify the effect of quantum fluc- 
tucttion on the orientational ordering in this molecular system. An efficient 
PIMC scheme [9]  for rotational motion was used to study this many-body 
system [4] .  The system consists of N = 9 0 0  quantum N_, rotators; the 
Trotter  dimensions went up to P = 500. The molecular centers of mass are 
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Fig. 1. Inverse effective correlation length ~ - i  in units 
of the lattice constant a = 4.26 A as a function of tem- 
perature; the extrapolated transition temperature T O = 
25.02_+ 0.08 K as obtained independently from energy 
cumulants is marked by the dotted line. Solid lines 
correspond to a fit assuming a simple linear dependence 
~=~+_ +C+ [I-T/Tol expected near To for a first- 
order transition, while dashed lines assume the critical 
behavior of the three-state 2D Potts class, ~= 
Go Jl - T/Tol-" with [7] ,,=5/6 and [8] ~-/~o =4.1. 
Circles and triangles denote Monte Carlo data. 

pinned on a regular trigonal x/~-superlattice found experimentally [2] ,  the 
interaction potentials were taken from the literature [ 10], and the rota- 
tional constant ON,_ was 2.9 K. The herringbone order parameter (OP)  
(p= (~'~"~3=i ~]1/2) is defined [4]  as 

q~= = ~ , ~ , =  s=l sin(2cp)"'- 2r/=) exp[ iQ=rj]  (2) 

where Q1 = 2~(0, 2/x/~)/a', Q ,  = 2~( - I, - 1/x/~)/a', Q3 = 2~( 1, - 1/~/3)/a', 
and r / l=0 ,  r/2=2~/3, ~13=4-~/3, a'=x/~a, and a = 2 . 4 6 & .  The central 
quantity is the OP  as a function of temperature; see Fig. 2. The critical 
temperature 7c of the classical system can be located around 38 K. At high 
temperatures, the quantum curve of the OP  merges on the classical curve, 
whereas it starts to deviate below To. Qualitatively, quantum fluctuations 
lower the ordering and thus the quantum OP  is always smaller than the 
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classical counterpart. The inclusion of quantum effects results in a nearly 
10% lowering of T~. The quantum system cannot reach the maximum 
herringbone ordering even at extremely low temperatures: the quantum 
librations depress the saturation value by 10%. In Fig. 2, the OP and total 
energy are compared with standard approximate theories valid for low and 
high temperatures. One can clearly see how the quasiclassical Feynman- 
Hibbs curve matches the "exact" quantum data above 30 K. However, just 
below the phase transition, this second-order approximation in the quan- 
tum fluctuations fails and yields uncontrolled estimates: just below the point 
of failure it gives classical values for the OP and the herringbone ordering 
even uanishes below 5 K. On the other hand, the quasiharmonic theory 
comes from the other end of the temperature axis and yields very accurate 
data below 5 K. The PIMC simulations, however, yield exact results over 
the whole temperature range. 
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Fig. 2. Herringbone order parameter and total energy for N 2 (X  I model with Steele's 
corrugation). Quantum simulation, solid line; classical simulation, dotted line; quasiharmonic 
theory, dashed line; Feynman-Hibbs simulation, triangles. Lines are linear connections of the 
data. 
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3. PHASE TRANSITIONS IN CLASSICAL AND QUANTUM 
2D FLUIDS 

Phase transitions in systems with purely repulsive interaction have 
received much attention recently [11 ]. In this section a system of hard 
disks (of diameter d) is considered with N A particles of type A and NB par- 
ticles of type B and interaction potential U (U(rl2) = ~ for rj, < d.,.L.,. , and 
zero else, r~2 is the distance of two particles, sl, s2E{A, B} are their 
species, and dAA = dBB = d, dAB = d-t- zJ/2). The total number of particles 
N=512 and the total volume V is fixed and thus the average density 
p * = p , d 2 = N d 2 / V .  Due to the additional repulsion between A and 
B-type particles, one can expect a phase separation into an A-rich and a 
B-rich fluid phase for large values of A > A~ and fixed total density. Since 
the phase separation is driven by entropy, only a small interracial free 
energy is expected in the case of phase coexistence. In order to locate the 
critical values A~ as a function of p* even in such extreme situations, the 
GEMC simulation techniques [12] have been combined [14] with the 
block analysis finite-size scaling techniques [ 13]. Each of the 106 MC steps 
consisted of 400 attempted moves, 20 particle exchange, and 2 volume 
change attempts. A first approximation for the critical line /~, defined by 
p*(A~), can be computed in analogy to a study in three dimensions [ 15] 
by convex envelope arguments for the free energy, resulting in the compact 
expression 

P*(,~) 

The critical points were obtained by inspection of number-difference 
histograms Pc(NA--NB) on different length scales L obtained by subdivi- 
sion of the simulation boxed of sizes V~ and V2 ( V~ + V, = V) into smaller 
subsystems of size L xL.  For A <A~, the distributions are all singly 
peaked; for larger A a single-peak structure of PL(NA--NB) results for 
large L and a double-peak structure for small L. An analysis of these 
histograms with the cumulants Uc = 1 - ( (NA -- NB) 4) L/3( (NA -- NB) 2) ~_ 
allows a determination of critical points, due to the cumulants L-invariance 
at the critical point. The GEMC results for points on the critical line are 
(p*, AJd)=(0.6 ,  0.562+0.04), (0.55, 0.66+_0.01), (0.5, 0.789_+0.01), 
(0.499+0.01, 0.85), (0.5_+0.02, 0.9), (0.508_+0.03, 0.95), (0.46+_0.02, 1). 
Similarly to the prediction of Eq. (3), Pc is a decreasing function of A~, 
however, at a given density the GEMC results for Ac are about 20% larger 
than the predictions of Eq. (3). 
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Now the results of a novel combination of GEMC and PIMC simula- 
tion techniques [ 14] are presented. In particular, the gas-liquid transition 
of a model fluid with internal quantum states is studied. The Hamiltonian 
is given by 

2p~ m co O N H =  ,=, 2 Z a;"+ Z U(%)- Z J(,'~/)a,o; (4) 
i= I i<j  i<j  

M is the particle mass, Pz is the momentum of particle i, r u is the distance 
between particle i and particle j, and a" and a-- are the usual Pauli spin-1/2 
matrices. U is a hard-disk potential for particles with diameter d and 
J ( r ) =  J for d < r <  1.5d and zero elsewhere. In the adiabatic approximation 
(large M), one assumes a separation of time scales for the translational 
degrees of freedom and the internal quantum states. An application of the 
Trotter formula results in the following expression [ 14, 16, 17] for the par- 
tition function Zu~.vt..r=limp_.~_ Z,,, at temperature T* =( f l j ) - i  with 

Ze(P, NI, VI)-2,N, NI v drl.. ,  dru, exp --[3 Y" U(r~j) 
• i<j  

x 2 exp - f l  • K,,Si.,,Si.t,+, 
{sl i=l ?=t 

NI 
"[-~ i ~= I J(r~i) S i p S j p ) ]  (5)  

with A i, = [ ½ sinh(fl~o o/P) ] i/2 and K? = ( 1/2/3) In [ coth(/3co o/2P) ], 2 is the 
thermal de Broglie wavelength, the quantum chains have periodic bound- 
ary conditions with respect to P, and Si.p = +_ 1. Nt denotes the number of 
particles in one of the GEMC-boxes at volume V~. In the GEMC simula- 
tion, in addition, all necessary volume and particle decompositions have to 
be taken into account properly for the full partition function. The Gibbs 
ensemble simulations [14] were done with N = 2 0 0  particles and 
P//3J=40. A typical run o v e r  10 6 MC steps (consisting of 200 attempted 
moves, 20 particle exchange, and 1 volume change attempts) took about 14 
CPU h on a CRAY YMP; the same interaction parameters have been 
chosen as in Ref. 17. In an additional study the phase diagram was 
analyzed by a combination of PIMC and finite-size scaling techniques 
[17]. Applying the finite-size block analysis technique [13], sketched 
above, in conjunction with the density cumulant intersection method [ 13], 
the tricritical point at the end of the critical line can be located at 
((/3tr~J)-1, ptr~R z) = (0.57 + 0.02, 0.45 + 0.01). Below the tricritical tem- 
perature a paramagnetic (PM) gas phase coexists with a ferromagnetic 
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(FM) liquid phase for a certain density window. By cooling the system 
further down, a sudden jump in the coexistence curve on the high-density 
side occurs: the system crystallizes into a solid phase. Below this tem- 
perature a PM gas phase is in coexistence with a square-lattice FM solid 
phase. The square lattice is stable, presumably due to the particular choice 
of the interaction potential J(r) of the square-well type, which favours 
square lattice structures energetically at low temperatures. The results of 
the GEMC simulations for the gas-liquid coexistence densities are pre- 
sented in Table I, together with the NVT-ensemble results of Ref. 17 and 
MF predictions. Only a weak ensemble dependence of the results can be 
found. The MF theory predicts a too large coexistence region, resulting in 
a 100% deviation from the GEMC results for the gas-liquid critical tem- 
perature T¢; the latter was found by GEMC to be about T~ =0.57, in good 
agreement with NVT-ensemble results. The MF study provides a qualita- 
tively correct phase diagram but it underestimates the fluctuations and, in 
principle, contains only the tricritical exponents of the system in three 
dimensions. The exponent describing the merging of the phase boundaries 
in the tricritical point is distinctly smaller than the MF value (unity), 
resulting in a much flatter shape of the coexistence region, and thus the 
tricritical temperature is off by a factor of two as compared to PIMC! 

Now a modification of the Ramakrishnan-Yussouff theory [ 19] to the 
model fluid Eq. (4) is discussed [ 18]. The magnetic interaction arising from 
the presence of the internal quantum states is incorporated in the sense of 
a MF treatment [ 16] of the attractive interaction in addition to the classi- 
cal hard-disk contribution to the free energy. The magnetization density 
m(r) for the ferromagnetic solid is proportional to the number density, i.e., 
re(r) =mop(r). In the MF model, the magnetic field on one particle due to 

Table L Gas-Liquid Coexistence Densities of the Two-Dimen- 
sional Fluid with Internal Quantum States Versus Temperature" 

Gibbs-MC NVT-MC [ 17] Mean field 

T* p~ p~ p~ p? pC p~ 

0.35 0 .139  0.739 0.174 0.711 0.198 0.762 
0.4 0 . 1 9 6  0.715 0.232 0.659 0.240 0.744 
0.45 0 .265  0.685 0.298 0.639 0.276 0.726 
0.5 0 . 3 2 3  0.633 0.341 0.576 0.3 0.702 
0.55 0 .376  0.521 0.399 0.506 0.324 0.684 

Comparison of Gibbs ensemble Monte Carlo results with those 
of an NVT-ensemble simulation and mean field predictions. 
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the interaction will all other particles is approximated by the average 
molecular field, ~,,,(r)= I dr' m ( r - r ' ) J ( r ' ) .  The free-energy functional is 
then given by 

• f l c d r  
flf([P]) = ~fc,([P]) + ~ ] -~ re(r) ~,,,(r) 

dr  
~7,,(r) + co;/4) -} ] _j__p(r)lnr2cosh~O(V L / •  , , 1/7 (6) 

flf~([p]) and the direct correlation function have been taken from the 
literature [20]. The free-energy functional, Eq.(6), has been minimized 
with respect to choices of (nonuniform) densities p(r) to obtain the 
Helmholtz free energies of the solid phases [18]. If the Helmholtz free 
energy in the fluid phase is known from the MF analysis [16], it is 
straightforward to obtain the T*-p*  phase diagram by performing 
double-tangent constructions to obtain coexistence densities. For tem- 
peratures below T*--5.9, the system undergoes a second-order transition 
from a paramagnetic fluid phase at low densities to a ferromagnetic fluid 
at high densities and a first-order transition from a ferromagnetic fluid to 
a ferromagnetic hexagonal solid. As expected, the freezing density decreases 
with decreasing temperature due to the greater stability of the solid phase 
arising from the magnetic interaction. The DFT predictions for the location 
of the fluid-solid transition was confirmed by an analysis of the bond- 
orientation order parameter of MC data [21]. Also, the average 
magnetization of the solid mo is observed to be higher than that of the 

TTCp,- 1.25, one obtains fluid. At temperatures below the tricritical point * - 
a first-order transition from a paramagnetic gas to a ferromagnetic fluid in 
addition to the liquid-solid transition. The liquid phase is stable only for 
temperatures above a first triple temperature T ' p ,  = 0.55, while for tem- 
peratures below T*p~ and above T'p:=0.07,  a paramagnetic gas is in 
coexistence with a ferromagnetic hexagonal solid. The square-lattice solid, 
observed in the MC simulations [ 17] at T * =  0.16 + 0.01, starts appearing 
at temperatures below T*=0.09, and for a range of temperatures 
T*p ,<T* <0.09 there exists a reentrant transition with the hexagonal 
solid appearing for low and high densities, separated by a narrow region 
of square solid stability centered around p * =  1.0. Upon lowering tem- 
peratures below the paramagnetic gas-ferromagnetic square solid- 
ferromagnetic hexagonal solid triple point (T'p,), a gas phase is in 
coexistence with a square solid, followed by a square solid-hexagonal solid 
structural transition at higher densities. 
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4. RANDOM-FIELD-INDUCED ROUNDING OF THE ISING-TYPE 
TRANSITION IN PHYSISORBED ( C O ) l _ x  (Nz)x MIXTURES 

The statistical thermodynamics of systems with randomly quenched 
disorder is a real challenge for theory; for an overview see Ref. 22 and 
references therein. Particularly striking phenomena are predicted in 
reduced dimensionality, such as the destruction of long-range order of 
Ising-type systems in d= 2 dimensions by arbitrarily weak random fields 
[23]. This absence of true long-range order also shows up in a rounding 
of the transition even by very weak random fields, which has been con- 
firmed by a recent experiment on (CO)j _.,. (N2).,. [24]. Very weak dilution 
of CO with N, molecules (concentrations of 3% or less) produces a strong 
rounding of the specific heat anomaly of the transition [24]. Assuming that 
the quadrupole moment and dipole moment of the CO molecules are 
linearly coupled, one would obtain, from the quadrupole-quadrupole inter- 
action between N2 and CO, an effective random field acting on the CO 
dipole moments. For simplicity the system is being described by a simple 
square lattice, disregarding the actual sublattice structure. If we associate 
an Ising spin Si = + 1 with a CO molecule at site i and Si = 0 with an N~ 
molecule at the site, the following Hamiltonian [22] results: 

H=+ ~ JS, S / -  ~ J'S,(1-S)) (7) 
( i..]b ( i , . ] )  

Here J is the interaction between the nearest-neighbor pairs of spins 
(pseudo-dipole-dipole interaction), and J' the hypothetical pseudo-dipole- 
quadrupole interaction. In this model the sites j taken by N2 produce a 
field randomly: sometimes on a site in the sublattice where the spins are up, 
sometimes in the sublattice where the spins are down. This model is studied 
by MC methods [22]. Square lattices of sizes L=24 ,  32, 40, 50 are used 
with periodic boundary conditions and different impurity concentrations x. 
Averages are taken over 100-200 configurations of the impurity distribu- 
tion over the lattice for each x. Detailed analysis of the order parameter, 
susceptibility, and the cumulant [22] are consistent with the interpretation 
that the transition in the pure system is rounded by the random field. 

For the case of pure CO adsorption (x=0)  the low-temperature 
ordering of CO physisorbed on graphite has been investigated [25 ] by MC 
simulations with finite-size scaling methods, from a realistic microscopic 
model with continuous orientational degrees of freedom and a recent ab 
initio potential. An analysis of different contributions constituting the total 
CO-CO interactions reveals that the ordering is not caused by the elec- 
trostatic dipole moment, but by the shape asymmetry of the molecule. The 
ordered ground state may be a ferrielectric herringbone structure with a net 
dipole moment perpendicular to the herringbone symmetry axis. 



Phase Transitions in Adsorbed Monolayers 167 

ACKNOWLEDGMENTS 

Discussions and cooperation with K. Binder, M. O. Ihm, D. Marx, 
O. Opitz, V. Pereyra, F. Schneider, S. Sengupta, and H. Wiechert and 
financial support from the Deutsche Forschungsgemeinschaft (Heisenberg 
Fellowship) are gratefully acknowledged, as well as the granting of com- 
puter time on the Cray-YMP (HLRZ Jiilich and RHRK Kaiserslautern), 
VP 100 (RHRK Kaiserslautern), and IBM RISC System/6000 cluster 
(ZDV Mainz). 

REFERENCES 

I. S. K. Sinha, Orderh~g #s Two Dimensions (North-Holland, Amsterdam, 1980). 
2. M. H. W. Chan, A. D. Migone, K. D. Miner, and Z. R. Li, Phys. Ree. B 30:2681 (1984). 
3. O. Opitz, D. Marx, S. Sengupta, P. Nielaba, and K. Binder, Surf Sci. 297:L122 (1993). 
4. D. Marx, O. Opitz, P. Nielaba, and K. Binder, Phys. Re~,. Lett. 70:2908 (1993); D. Marx, 

S. Sengupta, and P. Nielaba, J. Chem. Phys. 99:6031 (1993). 
5. O. G. Mouritsen and A. J. Berlinsky, Phys. Ree. Lett. 48:181 (1982); O. G. Mouritsen, 

Computer Studies ~/ Phase Transitions and Critical Phenomena (Springer, Berlin, 1984). 
6. W. Selke, Physica A 177:460 (1991). 
7. F. Y. Wu, Ree. Mod. Phys. 54:235 (1982). 
8. V. Privman, P. C. Hohenberg, and A. Aharony, in Phase Transitions and Critical 

Phenomena, l%l. 14, C. Domb and J. L. Lebowitz, eds. (Academic, London, 1991 ). 
9. D. Marx and P. Nielaba, Phys. Rev. A 45:8968 (1992). 

10. C. S. Murthy, K. Singer, M. L. Klein, and 1. R. McDonald, Mol. Phys. 41:1387 (1980): 
W. A. Steele, Sul f  Sci. 36:317 (1973). 

I1. T. Biben and J. P. Hansen, Phys. Rev. Lett. 66:2215 (1991). 
12. A. Z. Panagiotopoulos, Mol. Phys. 61:813 (1987): Mol. Simul. 9:1 (1992). 
13. K. Binder, Z. Phys. B43:119 (1981): M. Rovere, D. W. Heermann, and K. Binder, 

Earophys. Lett. 6:585 (1988). 
14. F. Schneider, M. O. lhm, and P. Nielaba, in Computer Simulation Studies in Condensed 

Matter Physics VII, D. P. Landau, K. K. Mon, and H. B. Schfittler, eds. (Springer, Berlin, 
1994), p. 188. 

15. T. W. Melnyk and B. L. Sawford, Mol. Phys. 29:891 (1975). 
16. P. de Smedt, P. Nielaba, J. L. Lebowitz, J. Talbot, and L. Dooms, Phys. Ree. A38:1381 

(1988). 
17. D. Marx, P. Nielaba, and K. Binder, Phys. Rev. B47:7788 (1993). 
18. S. Sengupta, D. Marx, and P. Nielaba, Europhys. Lett. 20:383 (1992). 
19. T. V. Ramakrishnan and M. Yussoufl ~, Phys. Rev. B19:2775 (1979); see also A. D. J. 

Haymet and D. J. Oxtoby, J. Chem. Phys. 74:2559 (1981). 
20. C. Ebner, H. R. Krishnamurthy, and R. Pandit, Phys. Ree. A43:4355, (1990); Y. Rosenfeld, 

Phys. Ree. A42:5983 (1990). 
21. A. C. Mitus, D. Marx, S. Sengupta, P. Nielaba, A. Z. Patashinskii, and H. Hahn, J. Phys. 

Condensed Matter 5:8509 (1993). 
22. V. Pereyra, P. Nielaba, and K. Binder, J. Phys. Condensed Matter 5:6631 (1993). 
23. Y. lmry and S. K. Ma, Phys. Rev. Lett. 35:1399 (1975); K. Binder, Z. Phys. B50:343 

11983); S, Fishman and A. Aharony, J. Phys. C Solid State Phys. 12:L729 (1979). 
24. H. Wiechert and St.-A. Arlt, Phys. Ree. Lett. 71:2090 (1993). 
25. D. Marx, S. Sengupta, P. Nielaba, and K. Binder, Phys. Ree. Lett. 72:262 (1994). 


